Reg. No. :							
------------	--	--	--	--	--	--	--

Question Paper Code: 52857

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third Semester

Computer Science and Engineering

CS 6301 - PROGRAMMING AND DATA STRUCTURES - II

(Common to: Information and Technology)

(Regulation 2013)

(Also common to PTCS 6301 – Programming and Data Structures II for B.E. Part-time - Second Semester – Computer science and Engineering –Regulation 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define an object. Give an example.
- 2. What is 'this' pointer in C++?
- 3. State the use of operators 'new' and 'delete' in C++.
- 4. Define inheritance. Give its types.
- 5. What is an abstract class? Give an example.
- 6. What is an exception Handling. Give an example.
- 7. What is a nonlinear data structure? Give an example.
- 8. What are disjoint sets? Give an example.
- 9. Define Euler path and Euler circuit of a graph.
- 10. What is a minimal spanning tree? Give an example.

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	(i)	Outline abstraction and encapsulation with an example.				
		(ii)	Explain the storage classes in C++.	(7)			
			Or				
	(b)	(i)	Write a C++ program to print the first 'n' prime numbers.	(6)			
		(ii)	Write a C++ program to accept a square matrix, find the transpand print the result. Use classes and member functions.	pose (7)			
12.	(a)	Writ	te a C++ program to sort an array of 'N' names in alphabetic order	r. (13)			
			Or				
	(b)	(i)	Explain dynamic memory allocation in C++ with code snippets.	(7)			
		(ii)	What is polymorphism? Outline compile time polymorphism runtime polymorphism with an example.	and (6)			
13.	(a)	Exp	lain exception handling in C++ with an example.	(13)			
			Or				
	(b)		at is a template? Explain class template and function template code.	with (13)			
14.	(a)		at is an AVL tree? Illustrate the steps in the algorithm for insert e into an AVL tree with an example.	ing a (13)			
			Or				
	(b)		at is a splay tree? Illustrate the steps in the algorithm for deleting the form a splay tree with an example.	ing a (13)			
15.	(a)		plain the algorithm for breadth-first search traversal of a graph example.	with (13)			
			Or				
	(b)		cline the steps in the Dijkstra's single-source shortest path algor h an example.	rithm (13)			

16. (a) Construct a B - tree of order 5 for the following key values: 1, 12, 8, 2, 25, 6, 14, 28, 17, 7, 52, 16, 48, 68, 3, 26, 29, 53, 55 arid 45. Illustrate the tree construction process step by step. (15)

Or

(b) Apply the Kruskal's algorithm to find the minimal spanning tree for the following graph: (15)

Adapt of Fig. X or St. 1997.

(4)